The Saturation Limit of the Magnetorotational Instability
نویسنده
چکیده
Simulations of the magnetorotational instability (MRI) in a homogeneous shearing box have shown that the asymptotic strength of the magnetic field declines steeply with increasing resolution. Here I model the MRI driven dynamo as a large scale dynamo driven by the vertical magnetic helicity flux. This growth is balanced by large scale mixing driven by a secondary instability. The saturated magnetic energy density depends almost linearly on the vertical height of the typical eddies. The MRI can drive eddies with arbitrarily large vertical wavenumber, so the eddy thickness is either set by diffusive effects, by the magnetic tension of a large scale vertical field component, or by magnetic buoyancy effects. In homogeneous, zero magnetic flux, simulations only the first effect applies and the saturated limit of the dynamo is determined by explicit or numerical diffusion. The exact result depends on the numerical details, but is consistent with previous work, including the claim that the saturated field energy scales as the gas pressure to the one quarter power (which we interpret as an artifact of numerical dissipation). The magnetic energy density in a homogeneous shearing box will tend to zero as the resolution of the simulation increases, but this has no consequences for the dynamo or for angular momentum transport in real accretion disks. The claim that the saturated state depends on the magnetic Prandtl number may also be an artifact of simulations in which microphysical transport coefficients set the MRI eddy thickness. Finally, the efficiency of the MRI dynamo is a function of the ratio of the Alfvén velocity to the product of the pressure scale height and the local shear. As this approaches unity from below the dynamo reaches maximum efficiency. Farther from the disk midplane the Parker instability will dominate the local dynamics and the dynamo process.
منابع مشابه
Saturation of the magnetorotational instability
An analytical theory is developed that describes asymptotically exactly the process of nonlinear saturation of the magnetorotational instability in a model problem employing a linear shear flow in a uniformly rotating channel. The theory shows that the instability saturates by modifying the shear responsible for it. The saturation process requires both viscous and Ohmic dissipation. The theory ...
متن کاملMagnetorotational instability: recent developments.
The magnetorotational instability is believed to play an important role in accretion disc physics in extracting angular momentum from the disc and allowing accretion to take place. For this reason the instability has been the subject of numerous numerical simulations and, increasingly, laboratory experiments. In this review, recent developments in both areas are surveyed, and a new theoretical ...
متن کاملAn asymptotically exact reduced PDE model for the magnetorotational instability: derivation and numerical simulations
Taking advantage of disparate spatio-temporal scales relevant to astrophysics and laboratory experiments, we derive asymptotically exact reduced partial differential equation models for the magnetorotational instability. These models extend recent single-mode formulations leading to saturation in the presence of weak dissipation, and are characterized by a back-reaction on the imposed shear. Nu...
متن کاملLocalized magnetorotational instability and its role in the accretion disc dynamo
The magnetorotational instability (MRI) is believed to be an efficient way to transport angular momentum in accretion discs. It has also been suggested as a way to amplify magnetic fields in discs, the instability acting as a nonlinear dynamo. Recent numerical work has shown that a large-scale magnetic field, which is predominantly azimuthal, axisymmetric and has zero net flux, can be sustained...
متن کاملSelf-Sustained Ionization and Vanishing Dead Zones in Protoplanetary Disks
We analyse the ionization state of the magnetohydrodynamically turbulent protoplanetary disks and propose a new mechanism of sustaining ionization. First, we show that in the quasi-steady state of turbulence driven by magnetorotational instability in a typical protoplanetary disk with dust grains the amount of energy dissipation should be sufficient for providing the ionization energy that is r...
متن کاملNumerical Study of the Magnetorotational Instability in Princeton MRI Experiment
In preparation for an experimental study of magnetorotational instability (MRI) in liquid metal, we present non-ideal axisymmetric magnetohydrodynamic simulations of the nonlinear evolution of MRI in the experimental geometry. The simulations adopt fully insulating boundary conditions. No-slip conditions are imposed at all boundaries. A clear linear phase is observed with reduced linear growth ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009